Fused magnesia has the characteristics of high purity, large crystal grains, dense structure, starke Schlackenbeständigkeit, und gute Thermoschockstabilität. It is an excellent high-temperature electrical insulation material and is also used for making high-grade magnesia bricks, Magnesia-Kohlenstoff-Steine, and unshaped An important raw material for refractory materials. Fused magnesite is widely used in metallurgy, Chemieindustrie, national defense, scientific research, Luft- und Raumfahrt, household appliance components, usw.
Fused magnesia physical and chemical properties
The physical and chemical properties of Large Crystal Fused Magnesia (LFM)
Product Code | Chemische Zusammensetzung (Mass Fraction),% | Particle Bulk Density g/cm’ | |||||
MgO≥ | SiO2≤ | CaO≤ | Fe2O3≤ | Al2O3≤ | Burn Loss | ||
LFM 99 | 99.00 | 0.30 | 0.60 | 0.35 | 0.10 | 0.08 | ≥3.51 |
LFM 98.5 | 98.30 | 0.40 | 0.80 | 0.45 | 0.12 | 0.08 | ≥3,50 |
LFM 98A | 97.70 | 0.55 | 1.10 | 0.60 | 0.12 | 0.10 | ≥3,50 |
LFM 98B | 97.50 | 0.60 | 1.20 | 0.65 | 0.15 | 0.12 | ≥3.49 |
LFM 97A | 96.80 | 1.00 | 2.00 | 0.70 | 0.15 | 0.15 | ≥3.45 |
LFM 97B | 96.50 | 1.15 | 2.30 | 0.75 | 0.18 | 0.20 | ≥3.42 |
The physical and chemical properties of High-Calcium Electrically Fused Magnesia (HFM (C/S≥2))
Product Code | Chemische Zusammensetzung (Mass Fraction),% | Particle Bulk Density g/cm’ | |||||
MgO≥ | SiOz≤ | CaO≤ | Fe2O3≤ | Al2O3≤ | Burn Loss | ||
HFM 98 | 97.70 | 0.60 | 1.20 | 0.65 | 0.12 | 0.10 | 3.50 |
HFM 97 | 96.80 | 0.85 | 1.70 | 0.75 | 0.15 | 0.15 | 3.48 |
HFM 96 | 96.00 | 1.20 | 2.40 | 0.85 | 0.18 | 0.18 | 3.45 |
The physical and chemical properties of Ordinary Fused Magnesia (FM)
Product Code | Chemische Zusammensetzung (Mass Fraction),% | Particle Bulk Density g/cm’ | |||||
MgO≥ | SiOz≤ | CaO≤ | Fe2O3≤ | Al2O3≤ | Burn Loss | ||
FM 98 | 97.50 | 1.00 | 1.50 | 0.65 | 0.10 | 0.10 | ≥3,50 |
FM 97 | 96.50 | 1.30 | 2.00 | 0.70 | 0.15 | 0.15 | ≥3.48 |
FM 96 | 95.50 | 2.50 | 2.30 | 0.80 | 0.18 | 0.18 | ≥3.45 |
The specific production process of fused magnesite
In specific industrial production, the raw materials of fused magnesia of different specifications are also different. Ordinary fused magnesia usually uses magnesite directly as raw material, while large crystalline fused magnesia uses light-burnt magnesium as raw material. The equipment adopts Submerged arc furnaces mostly using three regenerated or non-regenerated graphite. The specific process is: feeding → ignition and lifting of electrode → gradual feeding → smelting (magnesite is sintered and melted by the heat generated by high current) → natural cooling → crushing, classification, and sorting → warehousing.
Advantages of fused magnesia
It has a complete structure, dense structure, high melting point (up to 2800°C), stable chemical properties, hohe Druckfestigkeit, strong insulation properties, Erosionsbeständigkeit, und Korrosionsbeständigkeit. It is an important raw material for metallurgy, Baumaterial, light industry, furnace lining, and bulk materials. It is also an indispensable and important refractory material in steel, Zement, Glas, Schmelzen von Nichteisenmetallen, und andere Branchen.
Main applications of fused magnesite
In the metallurgical refractory industry, it is used to produce auxiliary refractory materials such as high-purity fused magnesia, gunning materials, and ramming materials, as well as special refractory bricks such as flowing steel bricks, Magnesia-Steine, Und Magnesia-Chrom-Steine. It can also be used in vacuum and non-vacuum induction It is used as refractory lining on furnaces and electric arc furnaces. It is an ideal raw material for making magnesium oxide crucibles, furnace bladders, and various high-temperature casings.
WeChat
Scannen Sie den QR-Code mit wechat